metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(1-iminoethyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-olato- $\kappa^2 O, N^4$]copper(II)

Hualing Zhu, Zhan Wang, Zhen Wei, Yanan Bai and Xiaoping Xv*

Department of Basic Science, Tianjin Agriculturial College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China Correspondence e-mail: zhuhualing2004@126.com

Received 27 July 2011; accepted 31 July 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.006 Å; R factor = 0.063; wR factor = 0.136; data-to-parameter ratio = 12.3.

In the title complex, $[Cu(C_{12}H_{12}N_3O)_2]$, the Cu^{II} ion is tetracoordinated by two N atoms and two O atoms from two bis-chelating 4-(1-iminoethyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-olate ligands in a square-planar geometry. The two N atoms and two O atoms around the Cu^{II} atom are *trans* to each other, as the Cu^{II} atom lies on an inversion centre. The six-membered ring composed of the Cu, an O, an N and three C atoms of the ligand and the pyrazole ring is nearly planar, the largest deviation being 0.037 (4) Å for an N atom. In the crystal, weak intermolecular $C-H \cdots N$ hydrogen-bonding interactions link the molecules into chains along the *c* axis.

Related literature

For our ongoing studies on pyrazolone derivatives, see: Zhu, Shi *et al.* (2010); Zhu, Wei *et al.* (2010). For related structures, see: Parsons *et al.* (2004); Shi *et al.* (2005).

Experimental

Crystal data [Cu(C₁₂H₁₂N₃O)₂]

 $M_r = 492.03$

Monoclinic, $P2_1/n$	Z = 2
a = 6.391 (6) Å	Mo $K\alpha$ radiation
b = 9.010 (8) Å	$\mu = 1.06 \text{ mm}^{-1}$
c = 18.772 (17) Å	T = 113 K
$\beta = 98.701 \ (17)^{\circ}$	$0.10 \times 0.10 \times 0.10 \text{ mm}$
V = 1068.5 (16) Å ³	
Data collection	
Rigaku Saturn724 CCD	8871 measured reflections
diffractometer	1888 independent reflections
Absorption correction: multi-scan	1636 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.130$
2008)	
$T_{\min} = 0.902, \ T_{\max} = 0.902$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.063$	154 parameters
$wR(F^2) = 0.136$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
1888 reflections	$\Delta \rho_{\rm min} = -1.64 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Data collection: *CrystalClear* (Rigaku/MSC, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2008).

The authors are grateful for financial support from the Spark Program Foundation of the Science and Technology Department of China (research Nos. 09ZHXHNC07900 and 2010 GA610009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2436).

References

- Parsons, S., Emeleus, L., Tasker, P. & Wood, P. (2004). Private communication (refcode XAJREG). CCDC, Cambridge, England.
- Rigaku/MSC (2008). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320– m2321.
- Zhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010). Acta Cryst. E66, o1583.
- Zhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010). Acta Cryst. E66, m904.

supplementary materials

Acta Cryst. (2011). E67, m1208 [doi:10.1107/S1600536811030753]

Bis[4-(1-iminoethyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-olato- $\kappa^2 O$, N^4] copper(II)

H. Zhu, Z. Wang, Z. Wei, Y. Bai and X. Xv

Comment

As a part of our onging studies on pyrazolone derivatives as potential ligands (Zhu, Shi *et al.*, 2010; Zhu, Wei *et al.*, 2010) we report the structure of the title complex in this article.

In the title complex (Fig. 1.), the central Cu^{II} ion is tetracoordinated by two N atoms and two O atoms from two bischelating 4-(2-methyl iminomethyl)-3-methyl- 1- phenyl-1*H*-pyrazol-5(4*H*)-onato ligands in a square-planar geometry. The two N atoms and two O atoms around the Cu^{II} atom are *trans* to each other, as the Cu^{II} atom lies on an inversion centre. The six membered chelate ring (Cu1/O1/N3/C1/C2/C5) / and the pyrazol ring are nearly coplannar with the largest deviation 0.037 (4)Å for N2 atom. In the crystal structure, weak intermolecular hydrogen bonding interactions (C11—H11···N1) link molecules into one-dimensional chains (Fig. 2).

Experimental

The title compound was synthesized by dropping a copper acetate (15 mmol) ethanolic solution into an ethanolic solution of 4-[(3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene)(methyl) methylamino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one(30 mmol) and stirring for about 7 h at room temperature. The dark green blocks which were obtained were dried in air. The product was recrystallized from*N*,*N*-dimethylformamide which afforded crystals suitable for*X*-ray analysis.

Refinement

The H atoms were geometrically positioned and refined using a riding model, with N—H = 0.88 Å and C—H = 0.95 or 0.98 Å for the aryl or methyl H atoms, respectively, and $U_{iso}(H) = 1.2 U_{eq}(N/C-aryl)$ or $1.5U_{eq}(C-methyl)$.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: ⁱ: -x + 1/2, -y + 1/2, -z + 1/2).

Fig. 2. Part of the crystal structure showing intermolecular hydrogen bonding interactions $(C-H\cdots N)$ as dashed lines.

Bis[4-(1-iminoethyl)-3-methyl-1-phenyl-1*H*-pyrazol-5-olato- $\kappa^2 O, N^4$]copper(II)

F(000) = 510

 $\theta = 2.2 - 27.9^{\circ}$

 $\mu = 1.06 \text{ mm}^{-1}$

Block, dark green

 $0.10 \times 0.10 \times 0.10 \text{ mm}$

T = 113 K

 $D_{\rm x} = 1.529 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3203 reflections

Crystal data

[Cu(C₁₂H₁₂N₃O)₂] $M_r = 492.03$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn *a* = 6.391 (6) Å *b* = 9.010 (8) Å c = 18.772 (17) Å $\beta = 98.701 (17)^{\circ}$ $V = 1068.5 (16) \text{ Å}^3$ Z = 2

Data collection

Rigaku Saturn724 CCD diffractometer	1888 independent reflections
Radiation source: rotating anode	1636 reflections with $I > 2\sigma(I)$
multilayer	$R_{\text{int}} = 0.130$
Detector resolution: 14.22 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ω and ϕ scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008)	$k = -10 \rightarrow 10$
$T_{\min} = 0.902, \ T_{\max} = 0.902$	$l = -22 \rightarrow 21$
8871 measured reflections	

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.043P)^{2} + 2.9195P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.62 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -1.64 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	1.0000	0.0000	0.0000	0.0168 (2)
01	0.8267 (5)	0.0256 (3)	0.07637 (14)	0.0180 (6)
N1	0.5337 (5)	0.1293 (4)	0.11912 (17)	0.0175 (8)
N2	0.3649 (5)	0.2250 (4)	0.09578 (18)	0.0181 (8)
N3	0.8317 (5)	0.1373 (4)	-0.06383 (17)	0.0174 (8)
Н3	0.8788	0.1521	-0.1049	0.018 (11)*
C1	0.6638 (6)	0.1120 (4)	0.0678 (2)	0.0149 (8)
C2	0.5770 (6)	0.2036 (4)	0.0094 (2)	0.0147 (8)
C3	0.3932 (6)	0.2692 (4)	0.0303 (2)	0.0172 (9)
C4	0.2369 (7)	0.3782 (5)	-0.0080 (2)	0.0226 (9)
H4A	0.1279	0.4000	0.0220	0.034*
H4B	0.1704	0.3356	-0.0540	0.034*
H4C	0.3105	0.4701	-0.0171	0.034*
C5	0.6613 (7)	0.2121 (4)	-0.0571 (2)	0.0186 (9)
C6	0.5517 (7)	0.3040 (5)	-0.1183 (2)	0.0248 (10)
H6A	0.6266	0.2943	-0.1599	0.037*
H6B	0.5513	0.4083	-0.1035	0.037*
H6C	0.4056	0.2694	-0.1314	0.037*
C7	0.5388 (7)	0.0532 (4)	0.1862 (2)	0.0171 (9)
C8	0.3507 (7)	0.0359 (5)	0.2136 (2)	0.0217 (9)
H8	0.2236	0.0788	0.1896	0.026*
C9	0.3505 (7)	-0.0449 (5)	0.2766 (2)	0.0242 (10)
Н9	0.2219	-0.0586	0.2953	0.029*
C10	0.5372 (7)	-0.1061 (5)	0.3124 (2)	0.0239 (10)
H10	0.5354	-0.1621	0.3552	0.029*
C11	0.7253 (7)	-0.0854 (5)	0.2858 (2)	0.0220 (9)
H11	0.8529	-0.1265	0.3105	0.026*
C12	0.7277 (7)	-0.0043 (4)	0.2227 (2)	0.0182 (9)
H12	0.8570	0.0117	0.2046	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic dis	placement parameter	$rs(A^2)$				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cu1	0.0155 (4)	0.0184 (4)	0.0171 (4)	0.0023 (3)	0.0047 (3)	-0.0003 (3)
01	0.0137 (14)	0.0223 (15)	0.0186 (14)	0.0057 (12)	0.0044 (11)	0.0013 (12)
N1	0.0137 (17)	0.0185 (18)	0.0205 (17)	0.0046 (14)	0.0034 (14)	0.0012 (14)
N2	0.0151 (17)	0.0160 (17)	0.0240 (18)	0.0013 (14)	0.0057 (14)	-0.0006 (14)

supplementary materials

N3	0.0184 (18)	0.0208 (18)	0.0140 (16)	-0.0009 (15)	0.0055 (14)	-0.0024 (14)
C1	0.0136 (19)	0.015 (2)	0.0166 (18)	-0.0032 (16)	0.0036 (16)	-0.0009 (15)
C2	0.015 (2)	0.0124 (19)	0.0170 (19)	-0.0017 (16)	0.0030 (16)	0.0006 (16)
C3	0.017 (2)	0.0125 (19)	0.022 (2)	-0.0026 (16)	0.0029 (17)	-0.0026 (16)
C4	0.020 (2)	0.020 (2)	0.027 (2)	0.0031 (18)	0.0017 (19)	0.0018 (18)
C5	0.021 (2)	0.016 (2)	0.018 (2)	-0.0043 (17)	0.0006 (17)	-0.0016 (17)
C6	0.030 (3)	0.024 (2)	0.020 (2)	0.004 (2)	0.0029 (19)	0.0001 (18)
C7	0.023 (2)	0.015 (2)	0.0138 (18)	0.0005 (17)	0.0044 (17)	-0.0034 (16)
C8	0.016 (2)	0.027 (2)	0.023 (2)	0.0053 (18)	0.0069 (18)	0.0012 (18)
C9	0.019 (2)	0.031 (2)	0.025 (2)	-0.0016 (19)	0.0104 (18)	-0.0015 (19)
C10	0.026 (2)	0.028 (2)	0.020 (2)	-0.004 (2)	0.0087 (19)	-0.0007 (18)
C11	0.020 (2)	0.026 (2)	0.019 (2)	0.0035 (19)	0.0014 (17)	-0.0021 (18)
C12	0.015 (2)	0.019 (2)	0.022 (2)	-0.0018 (17)	0.0058 (17)	-0.0016 (17)

Geometric parameters (Å, °)

Cu1—N3 ⁱ	1.932 (4)	C4—H4C	0.9800
Cu1—N3	1.932 (4)	C5—C6	1.502 (6)
Cu1—O1	1.953 (3)	C6—H6A	0.9800
Cu1—O1 ⁱ	1.953 (3)	С6—Н6В	0.9800
01—C1	1.290 (5)	С6—Н6С	0.9800
N1—C1	1.373 (5)	C7—C8	1.385 (6)
N1—N2	1.399 (5)	C7—C12	1.395 (6)
N1—C7	1.430 (5)	C8—C9	1.389 (6)
N2—C3	1.330 (5)	С8—Н8	0.9500
N3—C5	1.303 (5)	C9—C10	1.392 (6)
N3—H3	0.8800	С9—Н9	0.9500
C1—C2	1.418 (5)	C10—C11	1.383 (6)
C2—C3	1.422 (6)	C10—H10	0.9500
C2—C5	1.435 (6)	C11—C12	1.395 (6)
C3—C4	1.505 (6)	C11—H11	0.9500
C4—H4A	0.9800	C12—H12	0.9500
C4—H4B	0.9800		
N3 ⁱ —Cu1—N3	180.0 (2)	H4B—C4—H4C	109.5
N3 ⁱ —Cu1—O1	86.83 (14)	N3—C5—C2	119.1 (4)
N3—Cu1—O1	93.17 (14)	N3—C5—C6	120.7 (4)
N3 ⁱ —Cu1—O1 ⁱ	93.17 (14)	C2—C5—C6	120.1 (4)
N3—Cu1—O1 ⁱ	86.83 (14)	С5—С6—Н6А	109.5
O1—Cu1—O1 ⁱ	180.00 (14)	С5—С6—Н6В	109.5
C1—O1—Cu1	121.1 (2)	H6A—C6—H6B	109.5
C1—N1—N2	111.8 (3)	С5—С6—Н6С	109.5
C1—N1—C7	128.9 (3)	H6A—C6—H6C	109.5
N2—N1—C7	119.0 (3)	H6B—C6—H6C	109.5
C3—N2—N1	105.5 (3)	C8—C7—C12	120.7 (4)
C5—N3—Cu1	131.7 (3)	C8—C7—N1	118.4 (4)
С5—N3—H3	114.1	C12—C7—N1	120.9 (4)
Cu1—N3—H3	114.1	C7—C8—C9	119.2 (4)

O1—C1—N1	123.0 (3)	С7—С8—Н8	120.4
O1—C1—C2	131.4 (4)	С9—С8—Н8	120.4
N1—C1—C2	105.6 (3)	C8—C9—C10	120.5 (4)
C1—C2—C3	105.8 (3)	С8—С9—Н9	119.7
C1—C2—C5	123.3 (4)	С10—С9—Н9	119.7
C3—C2—C5	130.8 (4)	C11—C10—C9	120.0 (4)
N2—C3—C2	111.4 (4)	C11—C10—H10	120.0
N2—C3—C4	117.7 (4)	С9—С10—Н10	120.0
C2—C3—C4	131.0 (4)	C10-C11-C12	120.0 (4)
C3—C4—H4A	109.5	C10-C11-H11	120.0
C3—C4—H4B	109.5	C12—C11—H11	120.0
H4A—C4—H4B	109.5	C11—C12—C7	119.5 (4)
C3—C4—H4C	109.5	C11—C12—H12	120.3
H4A—C4—H4C	109.5	C7—C12—H12	120.3
N3 ⁱ —Cu1—O1—C1	-178.9 (3)	C1—C2—C3—C4	178.8 (4)
N3—Cu1—O1—C1	1.1 (3)	C5—C2—C3—C4	-5.6 (7)
C1—N1—N2—C3	-1.2 (4)	Cu1—N3—C5—C2	3.6 (6)
C7—N1—N2—C3	-175.0 (3)	Cu1—N3—C5—C6	-175.4 (3)
O1—Cu1—N3—C5	-2.5 (4)	C1-C2-C5-N3	-3.1 (6)
O1 ⁱ —Cu1—N3—C5	177.5 (4)	C3—C2—C5—N3	-178.0 (4)
Cu1—O1—C1—N1	177.7 (3)	C1—C2—C5—C6	175.9 (4)
Cu1—O1—C1—C2	-1.4 (6)	C3—C2—C5—C6	0.9 (7)
N2—N1—C1—O1	-178.0 (3)	C1—N1—C7—C8	-151.2 (4)
C7—N1—C1—O1	-4.9 (6)	N2—N1—C7—C8	21.4 (5)
N2—N1—C1—C2	1.3 (4)	C1—N1—C7—C12	27.8 (6)
C7—N1—C1—C2	174.4 (4)	N2—N1—C7—C12	-159.6 (4)
O1—C1—C2—C3	178.3 (4)	C12—C7—C8—C9	-2.6 (6)
N1—C1—C2—C3	-1.0 (4)	N1—C7—C8—C9	176.4 (4)
O1—C1—C2—C5	2.3 (7)	C7—C8—C9—C10	0.9 (7)
N1-C1-C2-C5	-177.0 (4)	C8—C9—C10—C11	0.6 (7)
N1—N2—C3—C2	0.5 (4)	C9-C10-C11-C12	-0.5 (6)
N1—N2—C3—C4	-178.2 (3)	C10-C11-C12-C7	-1.1 (6)
C1—C2—C3—N2	0.3 (5)	C8—C7—C12—C11	2.7 (6)
C5—C2—C3—N2	175.9 (4)	N1—C7—C12—C11	-176.3 (4)
Symmetry codes: (i) $-x+2, -y, -z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3···O1 ⁱ	0.88	2.47	2.670 (5)	94.
C4—H4B…N3 ⁱⁱ	0.98	2.79	3.419 (6)	123.
C9—H9····N2 ⁱⁱⁱ	0.95	2.94	3.596 (6)	128.
C11—H11···N1 ^{iv}	0.95	2.61	3.366 (6)	137.
C11—H11···N2 ^{iv}	0.95	2.68	3.599 (6)	163.
C12—H12…O1	0.95	2.39	2.923 (5)	115.
Symmetry codes: (i) $-r+2 - y - z$: (ii) $r-1$	$v_{r} = \frac{1}{2} \frac{1}$	-7+1/2 (iv) $-r+3/2$	$2 v = 1/2 = -\pi + 1/2$	

Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+3/2, y-1/2, -z+1/2.

Fig. 1

Fig. 2